
A Lightweight Open Source Command and Control Center and its Interface to
Cubesat Flight Software

Patrick H. Stakem

Capitol Technology University, phstakem@captechu.edu

Johns Hopkins University, pstakem1@jhu.edu

Loyola University in Maryland, pstakem@loyola.edu

Guilherme Korol

guilhermekorol@hotmail.com

Pontifical University Catholic of Rio Grande do Sul,

Porte Alegre, Brazil.

Gabriel Augusto Gomes

gabrielaugustodm@gmail.com

University of Colorado, Colorado Springs.

Sao Paulo State Technical College (FATEC-BS)

Introduction

During a 2015 summer workshop for
Cubesat Design, Engineering, and
Operations at Capitol Technology
University (Laurel, MD), a requirement
arose for a lightweight command and
control system for the Cubesats. This
would implement all of the usual control
center functions such as telemetry ingest,
commanding, archiving, telemetry
format conversion, trending, and alerts.
The Cubesat onboard computer was a
Raspberry Pi Model B. This was running
a standard Linux image, and
incorporated portions of GSFC Flight
Software's cFS (Core Flight System). It
interfaced with a variety of sensors, and
was command-able. It was decided early

on that the total desired solution would
be open source. This was implemented
using the COSMOS software from Ball
Aerospace under Ubuntu Linux. The
Apache webserver was also added.
Using features of the COSMOS system,
formatted and limit-checked telemetry
were passed to the web server. This
allowed the end user terminal to be
laptops, tablets, or smartphones. In
addition to its control center role, the
software package allows for integration
testing of the Cubesat Flatsat. An
advantage of this approach is that the
control center hardware and software is
validated early. Different features of the
same software is used in the two
environments.

The system is planned to be used to
support Capitol's 2018 Cubesat mission.
Further additions will include a secure
remote commanding capability, limits-
violations text messages, and a “smart”
limit checker, that acts as a virtual
system engineer on console, deciding
when human intervention is needed.

The Cubesat Architecture

A Cubesat is defined by a set of
standards. The 1U cubesat is a cube, 10
cm on a side, with a mass less than 1.33
kilograms. For this project, we were
working with non-flight units. The
structure was 3-D printed in our lab. The
configuration included a computer and
several sensors, along with a battery.
Wireless ethernet was used in testing, in
conjunction with the lab infrastructure.

The flight computer was the Raspberry
Pi 2 Model B+, using an ARM7
architecture. The 8.3 x 5.7 cm board
hosts a 900 MHz 32-bit quad-core cpu,
plus one gigabyte of SRAM, and various
I/O interfaces. A microSD flash card is
used for non-volatile storage. This can
be 8 gigabytes or more. The unit weighs
under 60 grams. About the only
shortcoming of the architecture is the
lack of a real-time clock, but this can be
added with a small external board. Out
configuration of the Pi had an external
light sensor and a temperature sensor
connected via the i2c bus.

Although the Raspberry Pi is not
designed to be Rad hard, it showed a
surprisingly good radiation tolerance in
tests (Ref. 3). It continued to operate
through a dose of 150 krad(Si), with
only the loss of USB connectivity.

The Pi runs linux. Usually this is a
variation of the Debian distribution. The
Pi can also support real time operating
systems such as RTEMS, FreeRTOS,
CentOS, and others, with the edition of
the real-time clock.

Besides the standard Debian-based linux,
our Pi had modules from NASA/GSFC's
Core Flight Software installed. CFS is an
Open Source product of NASA/GSFC
Code 582, the Flight Software Branch.
The Core Flight Software consists of a
series of modules for various onboard
functions. We implemented the
TLMSystem.py, EventMessage.py, and
CmdUtil.c. One of the authors (Korol)
wrote a module Sensors.py to tie in the
sensors.

Sensors.py is the heart of the onboard
software. It is in charge of
communication with the cFS tools, reads
the sensors, sends data as telemetry, and
interprets incoming commands from the
Control Center. In order to send
telemetry, Sensors.py uses cmdUtil.c,
which is a cFS tool. Telemetry is
constructed by receiving packets through
another pair of cFS tools, TlmSystem.py
and EventMessage.py to our module,
Sensors.

The main script reads ambient light and
temperature sensors connected to an
external ADC chip, and an additional
accelerometer sensor. All these data can
be retrieved using commands such as
‘ALL’, which returns data from all
sensors, ‘TMP’, returning only
temperature data, ‘LGT’ for light, among
others. More importantly, the script is
structured in a way that makes the
implementation of new commands and
sensors easy. Some minor changes were
made to the EventMessage script in

order to get it interfaced to sensors.
The Core Flight Executive is a portable,
platform independent embedded system
framework developed by NASA
Goddard Space Flight Center. This
framework is used as the basis for the
flight software for satellite data systems
and instruments, but can be used on
other general embedded systems. We did
not implement the CFE, but only some
applications from the cFS, core Flight
Software.

CFE and cFS are released as open source
under the NASA Open Source
Agreement 1.3 (NOSA-1.3).

The Open Source Approach

All software both flight and ground used
on this project was required to be open
source, by self-imposed restrictions. It is
not a technical topic, but concerns the
right to use (and/or own, modify)
software. It’s about those software
licenses you click to agree with, and
never read. That’s what the intellectual
property lawyers are betting on.

Software and software tools are available
in proprietary and open source versions.
Open source software is free and widely
available, and may be incorporated into
your system. It is available under
license, which generally says that you
can use it, but derivative products must
be made available under the same
license. This presents a problem if it is
mixed with purchased, licensed
commercial software, or a level of
exclusivity is required.

Adapting a commercial or open source
operating system to a particular problem
domain can be tricky. Usually, the
commercial operating systems need to be

used “as-is” and the source code is not
available. The software can usually be
configured between well-defined limits,
but there will be no visibility of the
internal workings. For the open source
situation, there will be a multitude of
source code modules and libraries that
can be configured and customized, but
the process is complex. The user can
also write their own modules in this
case.

Many Federal agencies have developed
Open Source policies. NASA has created
an open source license, the NASA Open
Source Agreement (NOSA), to address
these issues. The Open Source Initiative
(www.opensource.org) maintains the
definition of Open Source, and certifies
licenses such as the NOSA.

The GNU General Public License (GPL)
is the most widely used free software
license. It guarantees end users the
freedoms to use, study, share, copy, and
modify the software. Software that
ensures that these rights are retained is
called free software. The license was
originally written by Richard Stallman of
the Free Software Foundation (FSF) for
the GNU project in 1989. The GPL is a
copyleft license, which means that
derived works can only be distributed
under the same license terms. This is in
distinction to permissive free software
licenses, of which the BSD licenses are
the standard examples. Copyleft is in
counterpoint to traditional copyright.
Mixing proprietary software “poisons”
free software, and cannot be included or
integrated with it, without abandoned the
GPL. The GPL covers the GNU/linux
operating systems and most of the
GNU/linux-based applications.

http://www.opensource.org/

Open Source describes a collaborative
environment for development and
testing. Use of Open Source code carries
with it an implied responsibility to “pay
back” to the community. Open Source is
not necessarily free.

A Vendor’s software tools and operating
system or application code is usually
proprietary intellectual property. It is
unusual to get the source code to
examine, at least without binding legal
documents and additional costs. Along
with this, you do get vendor support.

The Open Source philosophy is
sometimes at odds with the rigidized
procedures evolved to ensure software
performance and reliability. Offsetting
this is the increased visibility into the
internals of the software packages, and
control over the entire software package.
Application code can be open source.
The programming language Python is
open source. The popular web server
Apache is also open source.

The Open Source software that we used
included linux, the Core Flight System,
and the Python language on the Pi. The
support computer included Ubuntu
linux, COSMOS, and the Apache web
server.

ITAR

Systems that provide “satellite control
software” are included under the
International Trafficking in Arms
(ITAR) regulation, as the software is
defined as “munitions” subject to export
control. The Department of State
interprets and enforces ITAR
regulations. It applies to items that might
be transferred to non-US citizens, even
citizens of friendly nations or NATO

Partners. Even items received from
Allies may not necessarily be provided
back to them. Software and embedded
systems related to launch vehicles and
satellites are given particular scrutiny.
The ITAR regulations date from the
period of the Cold War with the Soviet
Union. Increased enforcement of ITAR
regulations recently have resulted in
American market share in satellite
technology declining. A license is
required to export controlled technology.
This includes passing technical
information to a foreign national within
the United States. Penalties of up to
$100 million have been imposed for
violations of the ITAR Regulations, and
imprisonment is also possible.
Something as simple as carrying ITAR
information on a laptop or storage
medium outside the US is considered a
violation. ITAR regulations are complex,
and need to be understood when working
in areas of possible application. ITAR
regulations apply to the hardware,
software, and Intellectual Property
assets, as well as test data and
documentation. We verified with Ball
Aerospace that the COSMOS product
was not subject to ITAR regulations.

The Control Center Architecture

Our satellite control center was
implemented in Capitol's Space
Operations Institute (SOI). This facility
has a high-speed direct link to NASA-
GSFC, some 5 miles away. The facility
is used to train student interns to be
satellite operators at GSFC. It was
established in 2002 with a NASA Grant,
and has supported six on-orbit missions.
It can serve as a backup or fall-back
control center. It is based on networked
pc architectures, as traditional consoles.

In the SOI, we implemented the
COSMOS software on one pc. At the
time, COSMOS was not available on
linux, so the Windows-7 version was
used. The COSMOS software remains
open source.

Ball Aerospace did not yet have a Linux
version of COSMOS, but indicated it
should be feasible, as they had
implemented it on the linux-based
RTOS, CentOS. At this point, one of the
author's (Stakem) ex-students from JHU,
currently at NASA, volunteered to take
this task on. He implemented the linux
version of COSMOS, using the source
code from Ball's website, over a
weekend. Then, he posted the linux
version back to their website. That's how
open source is supposed to work.

We switched to the linux-hosted version,
and implemented it on one of the
Author's (Stakem) personal laptops. We
also implemented the Apache web
server.

Onboard, telemetry was generated by a
module of CFS running on the Pi. We
did not implement the full CCSDS
protocol for this, due to time constraints.
Rather, it was TCP/IP format, to keep
things simple. A hardwired or wireless
(wifi) connection could be used. Later,
we can implement the CCSDS protocols,
and encapsulate them in IP packets.

Telemetry & Command as a service.

Telemetry received by COSMOS is
logged as binary, and goes through the
Telemetry Extractor process, which
produces a text file. It can then be
viewed as packets, as extracted
telemetry, engineering units, or graphed.
There is also a limit-checking process

that can be invoked on selected
telemetry. This involves setting yellow
and red limits for each selected telemetry
point.

The link between COSMOS and Apache
was solved by taking the Telemetry
Extractor's file and converting it from
text to HTML. These new files were
accessible to the Apache web server. The
data was put up on the lweb, and could
be viewed by laptop, tablet, or
smartphone.

Commanding of the Cubesat's onboard
processor was also implemented. This
used COSMOS's Command Sender
process, to send a CCSDS-configured
packet to the Pi's CFS Module command
receiver. Here it was parsed and passed
along to the Sensors.py routine. The
commands were simple – enable/disable
telemetry, select individual sensors, or
“all.”

The actual control center machine was
still located in the SOI room, which was
now closed and dark.

COSMOS

The COSMOS software package
consists of a series of applications that
can control and monitor a wide range of
embedded systems, including space
flight systems. The reader is directed to
the Ball website for more in depth
information. Here, we will discuss those
applications we used in this project. We
specifically used the command sender,
the packet viewer, the telemetry viewer,
the telemetry grapher, the telemetry
extractor, and Limit Checker.

The Command and Telemetry Server is
the real-time hub of the COSMOS

system. It logs commands and telemetry,
and provides the API for other tools to
send commands, receive telemetry and
other tasks. It can display the raw binary
of the command and telemetry packets.
It also performs limits monitoring of
received telemetry. Interaction with the
running COSMOS can be scripted, or
realtime. Configuration files, pre-
defined, provide the telemetry and
command characteristics of the selected
“target” system.

The Packet Viewer allows for viewing of
selected formatted telemetry items in
engineering units. The telemetry grapher
provides realtime or off-line graphing of
selected telemetry points. The data
viewer provides a text-based data
visualization function for such items as
log files and memory dumps.

The Telemetry Extractor converts
telemetry log files into (comma
separated value) CSV files, to be fed to
other tools such as relational data bases
or analysis tools such as MatLab or
Excel. The Script Runner functions
allows the user to develop and execute
test or operational procedures. The
Limits Monitor shows graphically any
and all telemetry points that exceed
predefined yellow or red limits.

Another nice feature of COSMOS is the
Handbook creator, which reads the
COSMOS configuration files about a
specific target, and produces HTML or
PDF Command & Telemetry handbooks.
Again, this automation removes several
error sources in the production of this
product.

COSMOS is implemented in Ruby, an
open source, object-oriented language.
COSMOS refers to the system it is

communicating with as the ”target.”
Thus, we defined the command and
telemetry files for the target “Pi.” We
could support multiple targets with
unique identifiers, but this feature was
not implemented due to time constraints.

We found COSMOS to be well-
documented and easy to use. When we
did contact Ball for clarifications, we
were provided prompt attention.
Remember, this is for a “free” product.

This is an ongoing collaborative
distributed project. We would be pleased
to work with any interested individual or
organization, and pass along our code.

Next steps include:

1. Implement limits-exceeded
texting, directly to the
appropriate individual's
smartphone.

2. Incorporate Mission Team Group
Meeting software.

3. Increase the capability of the
Limits Monitor towards a “smart
automated controller”

4. Implement automated learning,
trending, and aging monitoring.

5. Develop additional cFS aps to
merge with COSMOS.

6. Explore the cpu loading of
simultaneous multi-targets.

7. Implement the control center as a
virtual machine, and in the
“Cloud.”

8. Explore Control Center as a
service.

9. Explore Android version of
Cosmos, allowing for a Tablet
host.

Download the code:

The COSMOS source code:
https://github.com/BallAerospace/COS
MOS

The cFS source code:
http://sourceforge.net/projects/coreflight
exec/

The CFE source code:
http://sourceforge.net/projects/coreflight
exec/

The flight software image:

https://drive.google.com/file/d/0B
IgfVkdSVrNVENBczAtd08wME0/view

Main web pages:

CFS - https://cfs.gsfc.nasa.gov/

CFE -
http://opensource.gsfc.nasa.gov/projects/
cfe/index.php

COSMOS - www.cosmosrb.com

References:

1. Cudmore, Alan NASA/GSFC's
Flight Software Architecture:
core Flight Executive and Core
Flight System, NASA/GSFC
Code 582.

2. Fesq, Lorraine; Dvorak. Dan,
“NASA's Software Architecture
Review Board findings from the
Review of GSFC's “core Flight
Executive/Core Flight Software”
(cFE/CFS), Fight Software
Workshop, Nov 7-9, 2012,
SWRI, San Antonio, TX.

3. Violette, Daniel P.
“Arduino/Raspberry Pi: Hobbyist
Hardware and Radiation Total
Dose Degradation,” 2014,
presented at the EEE Parts for
Small Missions Conference,
NASA-GSFC, Greenbelt, MD,
September 10-11, 2014.

4. Wilmot, Jonathan Use of CCSDS
File Delivery Protocol (CFDP)
in NASA/GSFC's Flight Software
Architecture: Core Flight
Executive (CFE) and Core Flight
System (cFS), NASA GSFC,
Code 582.

5. Core Flight System (cFS)
Deployment Guide, Ver 2.8,
9/30/2010, NASA/GSFC 582-
2008-012.

6. Open Source Space,
http://www.linuxjournal.com/con
tent/open-source-space?page=0,0

Author's Biographies

Mr. Patrick H. Stakem

Mr. Stakem spent 44 years as a support
contractor at every NASA Center, and
specialized in flight software support.
He teaches for Loyola University in
Maryland, Graduate Department of
Computer Science, Capitol Technology
University, Electrical Engineering
Department, and The Johns Hopkins
University, Whiting School of
Engineering, Graduate Engineering for
Professionals Program. He has published
numerous technical papers and books.

Mr. Guilherme Korol is a student at the
Pontifical University Catholic of Rio
Grande do Sul, Porte Alegre, Brazil. He
received a scholarship from the Brazilian
Scientific Mobility Program to attend the

http://www.linuxjournal.com/content/open-source-space?page=0,0
http://www.linuxjournal.com/content/open-source-space?page=0,0
https://drive.google.com/file/d/0B
http://sourceforge.net/projects/coreflightexec/
http://sourceforge.net/projects/coreflightexec/
http://sourceforge.net/projects/coreflightexec/
http://sourceforge.net/projects/coreflightexec/
https://github.com/BallAerospace/COSMOS
https://github.com/BallAerospace/COSMOS

University of Colorado at Denver, and
the Summer 2015 Cubesat Engineering
and Operations Program at Capital
Technical University.

Mr. Gabriel Augusto Gomes is currently
a Computer Science student at the
University of Colorado at Colorado
Springs. He has a scholarship from the
Brazilian Scientific Mobility Program.
He also received a scholarship from the
same program to attend the Summer
2015 Cubesat Engineering and
Operations Program at Capital Technical
University. His home University is Sao
Paulo State Technical College.

